

#### KEIO, 25 Septembre 2018

### 1 — LOGIC 1.0

• Rests upon Trinity *Semantics/Syntax/Meta*.

Meta: sort of *go-between* linking *reality* and *language*. Ensures that reality is *faithfully* described.

• Seems convincing; indeed *deceiptive*.

Kizhe variables: clerical mistake, a variable not used for *generalisation*. Yields logical blunder  $\forall \Rightarrow \exists$ .

« Fixed » by declaring empty models « fake news ».

• Logic 1.0 is a sort of *axiomatic realism*.

Axiomatic means *military*, not quite rational.

Logic based upon *distrust* of misleading « reality ».

• Logic 2.0 replaces trinity with *knitting*.

|           | EXPLICIT  | IMPLICIT      |
|-----------|-----------|---------------|
| ANALYTIC  | 1-Constat | 2-Performance |
| SYNTHETIC | 3-Usine   | 4-Usage       |



## I — PROOF-NETS: FROM 1.0 TO 2.0

## 2 — ORIGINAL PROBLEM

• « Natural deduction » for linear logic.

Linear negation makes tree-shaped proofs *obsolete*. Hypothesis written as *conclusion*. Several conclusions: problem of *sequentialisation*.

- Solved for *multiplicative* fragment ⊗, 𝔅, ~.
   Links: Axiom, Cut, Times, Par: (0,2), (2,0), (2,1), (2,1).
   Switches: position L/R for Par-links.
   Correctness: connected/acyclic (*tree*) for any position of switches.
- Sequentialisation theorem: reduction of correct nets to sequent calculus.
- Difficult to extend to *full logic*.

Boxes used in 1986 version to handle additives...

Commutative conversions: a pain in the ass.

Jump criterions: depend on the proof-net, no *duality*.

• 1.0 misconception: proofnets seen as a syntactic *convenience*.

KEIO, 25 Septembre 2018

## 3 — Flunked Jailbreaks

KEIO, 25 Septembre 2018

• Multiplicative proofs and tests as *permutation* of atoms.

Passing a test:  $\sigma$  passes  $\tau$  iff  $\sigma \tau$  cyclic. Orthogonality:  $\sigma \perp \tau := \sigma \tau$  cyclic. Negation: becomes orthogonality,  $\sim A := A^{\perp}$ .

- *Geometry of interaction* (Gol, 1988) uses operator (vN) algebras. Permutations replaced with *partial symmetries*:  $\sigma = \sigma^3 = \sigma^*$ . Orthogonality: various notions, e.g.,  $\sigma \tau$  nilpotent.
- Ludics (2000) based upon additives and focalisation.
- Both approaches « hegelian » : contradictory foundations.
   ~A tests A (and conversely).
   Semantic (alethic) *refutation* replaced with (deontic) *recusation*.
   Gospel: the judges will be judged.
- Ends in a mess: one can *never* be sure of anything!
   BHK aporia: how do we know that a proof is actually a proof?

## 4 - CONDITIONS OF POSSIBILITY

• How do I *know* that a proof is a proof?

Typical case: « Axiom » link, i.e.,  $\vdash \sim A, A$ . Gol subpoenas *all* proofs of  $\vdash A$  and  $\vdash \sim A$ . Hegelian duality must be fixed by *finite* preorthogonal.

- L'*usine* (= factory), the missing piece of logic 1.0.
   Proof-nets: the typical occurrence of *usine*.
   Herbrand's theorem: early prefiguration of usine (1930).
- Analogy: *disk* vs. *player*.

Test of disk (resp. player) by means of *testing* player (resp. record). Test of testing record by testing player succeeds. Justifies  $\vdash$  disk, player.

Complementarity of testings need not extend to *tested*.
 Testing devices zone-free: *tested* player may refuse *tested* disk.
 Cut between ⊢ Γ, disk and ⊢ player, ∆ may fail.

KEIO, 25 Septembre 2018



# II — MULTIPLICATIVES

### 5 - PROOFS AS PARTITIONS

KEIO, 25 Septembre 2018

• Two candidates for multiplicative *analytics*:

Flows (directed):  $A \rightsquigarrow B$ , from A go to B. Identity link as  $A \rightsquigarrow \sim A + \sim A \rightsquigarrow A$ . Graphs (undirected):  $\ll edge \gg \{A, B\}$  between A and B. Identity link as  $\{A, \sim A\}$ .

• Original version (flows) leads to *permutations* of *literals:* 

No short trip condition translates as:

Duality proofs/switchings:  $\sigma \perp \tau$  iff  $\sigma \tau$  cyclic.

Unitary operators eventually generalise permutations: Gol.

Danos-Regnier: duality through *bipartite* graphs *proof/switching*.
Links B = {b<sub>1</sub>,...,b<sub>k</sub>}/C = {c<sub>1</sub>,...,c<sub>l</sub>} as *vertices* of graph. card({b<sub>1</sub>,...,b<sub>k</sub>} ∩ {c<sub>1</sub>,...,c<sub>l</sub>}) ≤ 1.
Literals α<sub>1</sub>,..., α<sub>n</sub> as *edges* of bipartite graph.
Edge α between B and C iff B ∩ C = {α}.
Correctness: bipartite graph *connected* and *acyclic*.

## 6 — The preorthogonal

KEIO, 25 Septembre 2018

- Literals  $\alpha_1, \ldots, \alpha_n$  of A replaced with support  $|A| := \{1, \ldots, n\}$ . Proof of A: red partition  $\sigma$  of |A|. Switching of A: cyan partition  $\sigma$  of |A|. Negation: corresponds to exchange between red and cyan.
- $\sigma \in A$  iff  $\sigma \perp \tau$  (i.e.,  $\sigma \cup \tau$  *connected* and *acyclic*) for all  $\tau \in \sim A$ . Conversely:  $\tau \in \sim A$  iff  $\sigma \perp \tau$  for all  $\sigma \in A$ .
- Preorthogonal  $A^p \subset \sim A$  with « enough » tests: l'usine. From  $\tau \in A^p, v \in B^p$  form  $\tau \cup v \in (A \ \mathcal{B} B)^p$ . From  $T \in \tau \in A^p, U \in v \in B^p$  form  $(\tau \setminus \{T\}) \cup (v \setminus \{U\}) \cup \{T \cup U\}) \in (A \otimes B)^p$ . Multiplicative neutrals  $1, \bot$ , a 1.0 contraption:  $n \neq 0$ .
- Identity « axiom » : if  $au \in A^p, v \in (\sim A)^p$ , then  $au \perp v$  (usine).
- Cut rule: if  $\sigma \perp A^p$  and  $\rho \perp (\sim A)^p$ , then  $\sigma \perp \rho$  (usage). Proves *cut-elimination:* knitting *usine/usage*.





# III — TRUTH

### 8 — HEGELIAN NEGATION

KEIO, 25 Septembre 2018

- 1.0 negation is *alethic*, concerns *truth*.
   Negation as *refutation* within *format* proceeding from the Sky.
   Consistency: formula and negation not *both* provable.
- 2.0 negation is *deontic*, concerns the *format* itself.
   Negation as *recusation:* « objection overruled ».
   Hegel's *contradictory foundations:* inconsistent according to 1.0 logic.
   Everything provable, at least as a switching of negation.
- Need to *revisit* the notion of *truth*. Tarski:  $A \wedge B$  true when A true and B true, etc. Amounts at: A true when A true.
- Distinguish, among the proofs of *A*, between:
   Ordeals: general proofs of sole *deontic* value, possible tests for ~*A*.
   True proofs: among ordeals, those of *alethic* value, who convey certainty.
- Truth (of proofs) preserved by the full *usine:* logical rules and *cut*. Consistency: some formula, e.g., 0, without true proof.

## 9 — Truth as binarity

- Usual logical proofs begin with identity  $\ll axioms \gg \vdash A, \sim A$ . Binarity condition: partition  $\pi$  true when made of cells of size 2.
- Binarity preserved by cut-elimination: if  $\{2,5\} \in 
  ho, \{i\} \cup S_i \in \sigma$ , then  $S_i = \{s_i\}$  and  $S_2 \cup S_5 = \{s_2, s_5\}$ .
- Binarity ensures *consistency*:

If  $\sigma \perp \tau$  and  $\sigma$  binary, then  $\tau$  not binary.

• Notion not suitable for *second order:* 

Logical proof of  $\exists XA$  contains *subjective* witness T s.t. A[T/X]. Witness is a correctness condition, no reason to be binary.

- Split support |A| as a disjoint union  $|A|_o + |A|_s$ . Cell  $S \in \sigma$  objective if  $s \subset |A|_o$ , subjective if  $S \subset |A|_s$ . Non animist partition: all cells either objective or subjective. Truth of  $\sigma$ : non animist and objective component  $\sigma \upharpoonright |A|_o$  binary.
- Non animist binarity suitable for usual logic.

KEIO, 25 Septembre 2018

10 — The topological (sub)invariant, a.k.a. gain

• *Euler-Poincaré* invariant of a graph *G*.

 $\sharp G := \operatorname{card}(\operatorname{vertices}) - \operatorname{card}(\operatorname{edges}).$ 

Theorem:  $\[\] G = card(components) - card(cycles).\]$ 

Tree: connected and acyclic, hence  $\sharp G = 1$ .

- Logical duality: define  $\sharp \sigma$  and  $\sharp \tau$  s.t.  $2 \cdot \sharp (\sigma \cup \tau) = \sharp \sigma + \sharp \tau$ .  $\sharp \sigma := 2 \cdot \operatorname{card} \sigma - \operatorname{card} |A|, \sharp \tau := 2 \cdot \operatorname{card} \tau - \operatorname{card} |A|$ . Orthogonality: if  $\sigma \perp \tau$ , then  $\sharp \sigma + \sharp \tau = 2$ .  $\sharp \sigma = \sum_{s \in \sigma} \sharp S$ , with  $\sharp \{s_1, \ldots, s_k\} := 2 - k$ .
- Extend invariant to *subinvariant*, the *gain*, taking care of subjectivity. Objective cell:  $\sharp \{s_1, \ldots, s_k\} := 2 - k$ ; *subjective cell*:  $\sharp S := 0$ . Non animist binary partition  $\sigma : \sharp \sigma = 0$ . Animist cell:  $\sharp (S_o + S_s) := \sharp S_o - 2$ ,

i.e, -k where k is the number of objective elements of S.

• If  $\sigma \perp \tau$ , then  $\sharp \sigma + \sharp \tau \leq 2$ : *gain* may *increase* during normalisation. Truth:  $\sigma$  *true* iff  $\sharp \sigma \geq 0$ . Normalisation *reinforces* truth.

KEIO, 25 Septembre 2018 11 — フ AND ヲ • The real constants of logic: *atomic* (one point) propositions. Objective  $\neg$  or subjective  $\neg$ . Both self-dual and true. Unique partition  $\{\{\alpha\}\}$  receives value:  $\sharp 7 := 1, \quad \sharp 7 := 0.$ **Proof-net**  $\{ 7, 9 \}$  logically correct, but *false* (value -1). • Multiplicative combinations of the sole 7: Up to equivalence, one combination  $\mathcal{T}_n$  s.t.  $\sharp \mathcal{T}_n = n$ .  $\mathcal{I}_1 := \mathcal{I}; \text{ for } n > 0, \mathcal{I}_{n+1} := \mathcal{I}_n \otimes \mathcal{I}.$ For  $n \leq 1$ ,  $\forall_{n-1} := \forall_n \sqrt[2]{7} \forall$ , e.g.,  $\forall_0 := \forall \sqrt[2]{7} \forall$ . • Multiplicative combinations of  $7, \overline{7}$  with at least one  $\overline{7}$ : Up to equivalence, one combination  $\hat{n}$  s.t.  $\sharp \hat{n} = n$ .  $\mathcal{I}_n \otimes \mathcal{I} \equiv \hat{n} \equiv \mathcal{I}_{n+2} \mathcal{I} \mathcal{I}.$ The series  $\mathcal{T}_n$  and  $\hat{n}$  distinct. Only relation:  $\forall_n \multimap \hat{n} \multimap \forall_{n+2}$ . • *Partitions* definitely better than *permutations*.

KEIO, 25 Septembre 2018

### 12 — BASIC PRESBURGER ARITHMETIC

- Multiplicative behaviour of the  $\mathcal{T}_n$ :
  - $\begin{array}{l} \overrightarrow{\phantom{a}}_m \otimes \overrightarrow{\phantom{a}}_n \equiv \overrightarrow{\phantom{a}}_{m+n}, \quad \overrightarrow{\phantom{a}}_m \xrightarrow{\phantom{a}} \overrightarrow{\phantom{a}} \overrightarrow{\phantom{a}}_n \equiv \overrightarrow{\phantom{a}}_{m+n-2}. \\ \sim \overrightarrow{\phantom{a}}_n \equiv \overrightarrow{\phantom{a}}_{2-n}, \quad \overrightarrow{\phantom{a}}_m \xrightarrow{\phantom{a}} \overrightarrow{\phantom{a}}_n \equiv \overrightarrow{\phantom{a}}_{n-m}. \end{array}$
- Multiplicative behaviour of the  $\hat{n}$  :
  - $\hat{m}\otimes\hat{n}\equiv\hat{m}\,\,\widehat{\gamma}\,\,\hat{n}\equiv\hat{n}+m.\ \sim\hat{n}\equiv\hat{-n},\quad\hat{m}\multimap\hat{n}\equiv\hat{n}-m.$
- Mixed multiplicative behaviour:
  - $\begin{array}{c} \widehat{m} \otimes \mathcal{7}_n \equiv \widehat{m+n}, \quad \widehat{m} \ \mathfrak{V} \ \mathcal{7}_n \equiv \widehat{m+n-2}, \\ \widehat{m} \multimap \mathcal{7}_n \equiv n-m-2, \quad \mathcal{7}_m \multimap \widehat{n} \equiv n-m. \end{array}$
- Absurdity 0 defined as  $\widehat{!-1} \otimes \overline{\neg}$ , i.e.,  $\sim (\widehat{-1} \Rightarrow \widehat{0})$ . Falsity *A* false when  $\neg A$  (i.e.,  $A \Rightarrow 0$ ) true. Truth:  $\widehat{n}$  true for  $n \ge 0$ ,  $\neg \widehat{n}$  true for n < 0. Order: defined by m - n; true when  $m \le n$ , false when n < m.
- However, product  $m \cdot n$  makes no sense in terms of the  $\mathcal{T}_n$  and  $\hat{n}$ .

### 13 — A JAILBREAK

- Jailbreak from tarskism and the idea of *subliminal classicism*. Constructivity sort of *guilding the lily* over classical frame.
- Good news: topological truth *refutes* classical logic. Excluded middle:  $\hat{m} \equiv \hat{n} \lor \hat{n} \equiv \hat{p} \lor \hat{p} \equiv \hat{m}$ . Contradicted by:  $\neg(\hat{m} \equiv \hat{n})$  for  $m \neq n$ .
- Deviation w.r.t. *classical truth:*

| A | B            | $oldsymbol{A}\otimes oldsymbol{B}$ | A 78 B       | $\sim A$ |
|---|--------------|------------------------------------|--------------|----------|
| t | $\mathbf{t}$ |                                    | $\mathbf{f}$ | t        |
| f | t            | t                                  | f            |          |

**Disjunction** more deviant: linear negation does not exchange true/false.

• Jailbreak from the very idea of *truth tables*.

 $\mathcal{T}_n$  and  $\hat{n}$  receive same value n.

Inequivalent:  $\hat{n} \multimap \mathcal{I}_n \equiv -2$ , false.

KEIO, 25 Septembre 2018

## 14 — DIGRESSION: GAMES

- Games in logic: Gentzen (unpublished) « consistency proof » (1936).
   Propositions as games.
   Proofs as winning strategies.
- Mistreated as 1.0 « game semantics » (Lorenzen, Lorenz, Felscher, etc.) Rule proceeding from the Sky. Status of *Opponent* dubious. Ad hoc: sort of carbon copy of syntax.
- Ludics, etc. consider sort of *deontic* game.

Player, opponent free to interact, provided play *converges*. Opponent may play *losing* for the sole sake of *forbidding* move of *Player*.

• Present in proof-nets: *deontic* interaction  $\sigma \perp \tau$ . Three notions of *gain:* Play:  $\sharp_{\tau}(\sigma)$ . Does not depend upon  $\tau$  in multiplicative case. Strategy:  $\sharp_A \sigma := \inf_{\tau \in \sim A} \sharp_{\tau}(\sigma)$ . May take value  $-\infty$ . Game:  $\sharp A := \sup_{\sigma \in A} \sharp_A \sigma$ . May take values  $-\infty, +\infty$ .

KEIO, 2 Octobre 2018

# IV — THE FOUR HORSEMEN OF COGNITION



#### 16 — ANALYTICS

• Central role of l'*usine*, i.e., proof-nets.

Location  $p_A(x)$ , sublocation  $p_A(1 \cdot x)$ : where propositions belong. Delogicalised: A and  $\sim A$  same slot (untyped). Star: sort of  $\ll$  thick wire  $\gg$  between n rays (n = 1, 2, 3, ...). Splits into substars, subsubstars, using variables, the same for all rays. Constellation: finite combination  $\sum \lambda_i S_i$ , with  $\lambda_i > 0$  real numbers.

- Dynamics should be internal: self-performing, down with the meta! Plugging: use of complementary colours, e.g., red/cyan, green/magenta. Matching: the analytics of cut-elimination, a.k.a. normalisation.  $\lambda \llbracket \Gamma, t \rrbracket + \mu \llbracket u, \Delta \rrbracket \rightsquigarrow \lambda \mu \llbracket \Gamma \theta, \Delta \theta \rrbracket$ , with  $\theta$  m.g.m. of t, u.
- Normalisation of *constellations* as *colour-elimination*.

Church-Rosser: equivalence between *one and two pairs* of colours. Major knitting responsible for the *associativity* of logical operations. Constat: uncolored constellations *(normal, explicit)*. Performance: coloured constellations *(colour-elimination, implicit)*.

KEIO, 2 Octobre 2018

## 17 — SYNTHETICS

- Type, format, *logic*. Distinction explicit/implicit, i.e., *a posteriori, a priori*.
   A posteriori: passing of finite battery of tests. *Usine*, cut-free.
   Non analytic: only in the very *choice* of tests.
   A priori: plugging with unknown complementary artifact. *Usage*, cut rule.
   Synthetic implicit refers to the monstrosity of *all* possible uses.
- L'usine should guarantee l'usage, *modulo* a « cut-elimination » result.
   Sequentialisation: no longer central; exotic *non sequential* connectives.
   Adequation: the *tested* are complementary, i.e., testing is *sharp* enough.
   Hilbert's consistency: miscarriage of kantism, no *checking* of the *a priori!* Apodictic cheques (absolutely safe): mere *impossibility*.
- Knitting usine/usage very demanding. We thus discover that: Church-Rosser permutates cuts (associativity).
   Switches must be *local*, i.e., independent of each other.
   And independent from the proof-net tested (no « jump » criterion).
   Analytics: finite sets ~ linear combinations (ensures additive knitting).

## 18 — THE CRITERION

- Propositions  $A, B, C, \ldots$  *located* as  $p_A(x), p_B(x), p_C(x), \ldots$ 
  - Proof  $\sigma$  in red tested by test  $\tau$  in cyan and uncoloured (conclusion). Test succeeds when  $\sigma + \tau$  admits (uncoloured) normal form  $p_{\Gamma}(x) := \llbracket p_A(x); x \in \Gamma \rrbracket$ .

Variants  $p_{\Gamma}(t)$ , etc. excluded because of *socialisation* (tensorisation).

- Weakening (absence) and contraction (repetition) would induce variants. Neutral  $\perp$  impossible; alternative second order  $\perp := \exists X(X \otimes \sim X)$ . Exponentials as logical ions (like  $OH^-, NH^{4+}$ ). Combined in  $!A \otimes B$  and  $?A \ ?B, A \Rightarrow B$ . Pure exponentials available at second order:  $\forall X((A \Rightarrow X) \multimap X)$ . Hidden conclusions:  $\Gamma, \underline{\Delta}$ . Result still  $p_{\Gamma}(x) := [\![p_A(x); x \in \Gamma]\!]$ .
- $?A \stackrel{?}{\sim} B$  handled like  $\stackrel{?}{\sim}$  without left position of switch.

Compensate absent position with *modest* switching, devoted to *acyclicity*. Modest test may use modest positions; result either  $\emptyset$  or  $p_{\Gamma}(x)$ . Connect  $?A \otimes B$  with ?A; *ignore* (erase) B.

KEIO, 2 Octobre 2018

## 19 — Atoms 7, 7 vs. variables

- Propositional atoms  $P, Q, R, \ldots$  and negations  $\sim P, \sim Q, \sim R, \ldots$ 1.0 blunder:  $P, Q, R, \ldots$  as « constants ». Variables  $X, Y, Z, \ldots$  universally quantified. Quantifiers  $\forall X, \forall Y, \forall Z, \ldots$  in *implicit* prefix.
- Links restricted to {X, ~X}: {X, X}, {X, Y}, etc. forbidden.
  1.0 approach: treat them like like *axioms* proceeding from the Sky.
  2.0 approach: use switchings of quantifiers.
- Switching of  $\forall X$ : involves three positions.
  - 1: X := 7 ?? 7 and  $\sim X := 7 \otimes 7$ .
  - **2:**  $X := 7 \otimes 7$  and  $\sim X := 7 \Re 7$ .
  - 3: X := 7 and  $\sim X := 7$ .
- Positions 1, 2 forbid  $\{X, X\}, \{X, Y\}$ , etc.
- Position 3 forces connection between  $\ll$  full  $\gg X$  and  $\sim X$ . Otherwise normal form would no longer be the full  $p_{\Gamma}(x)$ .

## 20 — ETA-EXPANSION

KEIO. 2 Octobre 2018

- $\eta$ -conversion, a marginal rewriting rule:  $\lambda x \cdot t(x) \rightsquigarrow t$ . Surjective pairing:  $(\pi_1 t, \pi_2 t) \rightsquigarrow t$ , etc. Academic use: add *tedious* and *straightforward* section in shallow paper. Inspiration: 0%, *transpiration:* 100%!
- Better handled reversed: *eta-expansion*, t → λx · t(x).
   Complies with category-theoretic *doxa* (universal problems).
   Poor analytics: only a *rewriting*, not self-performing.
- *Proof nets:*  $\eta$  as *decomposition* of non-atomic *identities*. Replace  $[\![A \ ? B, \sim A \otimes \sim B]\!]$  with  $[\![A, \sim A]\!] + [\![B, \sim B]\!]$ . Switching assumes everything  $\eta$ -expanded. Works in non-expanded case.

Testing performs its *own*  $\eta$ -expansion.

• Typical knitting: the test au does not depend upon  $\sigma$ .

Duality:  $\sigma \perp \tau$  would not make sense otherwise.

KEIO, 2 Octobre 2018 V — ADDITIVES

## 21 — Additive neutrals

• The *weakest* point of linear logic original.

1.0 version insists upon seeing T as *final* element of category. Wavering methodology: diverging constraints, nothing definite.

- Second order definitions  $\top := \exists X X, \quad 0 := \forall X X.$ Unilateral: don't use both of  $X, \sim X$ . Balance rights/duties  $X/\sim X$  not at stake. However presence of *subjective* elements.
- Boils down to  $T := (7 ?? ?) \Rightarrow ?, 0 := !(7 ?? ?) \otimes ?.$ Extremal gains:  $\sharp 0 = -\infty, \ \sharp T = +\infty.$
- $\frac{\vdash \Gamma, A}{\vdash \Gamma, \top}$  relocation of part A of proof-net  $\sigma$ , including switching  $\tau$  of A.
  - $\sigma$  in 7.
  - au (upper part of switching) in left eg.
  - au (lower part of same) in right eg.





Knitting: poor, must be refused.

## 24 — Additive proof-nets

• Basic problem: *superposition* of *contexts*  $\Gamma$  in & rule.

```
\frac{\vdash \Gamma, A \ \vdash \Gamma, B}{\vdash \Gamma, A \And B}
```

KEIO. 2 Octobre 2018

Analogue of the two auxiliary premises of  $\lor$ -elimination ( $C \rightsquigarrow \Gamma$ ). Locative conflict: both  $\Gamma$  want to occupy same slot. Boxes: mimick  $\lor$ -elimination; lead to complex *commutative conversions*. Boolean weights: *left*  $\Gamma$  vs. *right*  $\Gamma$ : poorly knitted.

- Coherent analytics (coherence between stars).
   Superposition handled by incoherent copies of Γ.
   Correctness by means of a spectacular criterion.
   Analytics a bit unmanageable; globally a pain in the ass.
- Main problem, *methodology:* too many constraints. Inherited from 1.0 tradition. Some may be obsolete. Sequentialisation: replaced with *cut-elimination*. Subformula property: must be *relaxed*.

### 25 - ADDITIVE CONJUNCTION

KEIO. 2 Octobre 2018

- Based on *analytic substrate* of second order version:
  - $A \And B := \exists X (!(X \multimap A) \otimes !(X \multimap B) \otimes X).$  $A \oplus B := \forall X ((A \multimap X) \Rightarrow ((B \multimap X) \Rightarrow X)).$
- Five sublocations  $\Phi_L, \Phi_R, \Phi_1, \Phi_r, \Phi_m$  of  $\Phi = A \& B, A \oplus B :$  $q_{\Phi}(L \cdot x), q_{\Phi}(R \cdot x) :$  correspond to subformulas A, B.  $p_{\Phi}(1 \cdot x), p_{\Phi}(r \cdot x), p_{\Phi}(m \cdot x) :$  correspond to the three X.
- Analytisation (delogicalisation) of context  $\Gamma$  : if  $C \in \Gamma$ ,  $p_C(x) \rightsquigarrow p_{\Phi}(1 \cdot (c \cdot x)), p_{\Phi}(r \cdot (c \cdot x)), p_{\Phi}(m \cdot (c \cdot x)).$ Three copies of  $\Gamma$  devoid of logical significance, i.e., *unswitched*. Premise  $\vdash \Gamma, A$  (resp.  $\vdash \Gamma, B$ ) of & rule in  $\Phi_1, \Phi_L$  (resp.  $\Phi_r, \Phi_R$ ). Third component: identity link (delocation) between  $\Gamma$  and  $\Phi_m$ .
- Plain switching L/R of  $\Phi = A \& B$ , e.g., left: Connect conclusion  $\Phi$  with premise  $A = \Phi_L$ ; and  $\Phi_1$  with  $\Phi_m$ :  $[p_{\Phi}(x), q_{\Phi}(L \cdot x)] + [p_{\Phi}(1 \cdot x), p_{\Phi}(m \cdot x)].$ Modest switching (left):  $[p_{\Phi}(x), p_{\Phi}(1 \cdot x), p_{\Phi}(m \cdot x)].$





## $\mathbf{28}-\mathbf{THE}$ subformula property

KEIO. 2 Octobre 2018

- Important, although slightly *ad hoc* from the very beginning:
   Predicate calculus: A[t/x] subformula of ∀xA.
   Controls formulas appearing in cut-free proof.
   Second order: definite loss of subformula property, i.e., of *any* control.
- Our additives do enjoy *subformula property*, provided we define: A, B, l, r, m as subformulas of  $A \& B, A \oplus B$ .
- However  $A \& B \mod$  hide » cut: Premise  $\sigma$  of  $\vdash A, [C \otimes \sim C]$  located in L, 1<sub>*i*</sub>. Identity  $C \multimap C$  located in m<sub>*i*</sub>. Left switch connects  $C \otimes \sim C$  with  $C \multimap C$  by performing the cut.
- Cut not quite hidden, since *implicitly* eliminated by correctness.
   Real second order can hide a « bad » (non normalising) cut.
   Analyticised version does *perform* the cut, *slicewise:* no bad surprise!
- Best *knitting* for additives: *simpler* than coherent version.

## 29 — SEQUENTIALISATION

- No longer part of the main *knitting*.
   Replaced with adequation *usine/usage*, a.k.a. normalisation.
   Prejudice: everything should be written *step by step*.
   Useful (very), but by no means *essential*.
- *n*-ary multiplicative: set of partitions of {1,...,n}. Duality: C ⊥ D iff union is a *tree*. Multiplicative: non-trivial set of partitions equal to *bidual*. Example: ⊗ := {{1,2}} vs. ?? := {{1}, {2}}.
- Sequentialisable connectives: built from  $\otimes$ ,  $\Re$  (series/parallel). Exotic 4-ary  $\P := \{\{1, 2\}, \{3, 4\}\} + \{\{2, 3\}, \{4, 1\}\}.$ Orthogonal:  $\sim \P := \{\{1, 3\}, \{2\}, \{4\}\} + \{\{2, 4\}, \{1\}, \{3\}\}.$ Non sequential:  $\P$ ,  $\sim \P$  admit proof-nets, but *no sequent calculus*.
- Open question: are non sequential connectives important? Didn't yet succeed in finding a positive use for them. Hard to handle, hence prognosis « reserved ».

#### KEIO, 2 Octobre 2018

### 30 — FULL PROPOSITIONAL CALCULUS

- Consists of multiplicatives, additives and *exponentials*.
   Devoted to *weakening* (absence) and *contraction* (repetition).
- Three exponentials s.t. !A→ ↓ A→ ↓ A.
  Plain (strong) exponentials !, ? allow weakening and full contraction.
  Auxiliary variable takes care of copies.
  Expansionals ↓, ↑ allows weakening and limited contraction.
  Same as above, but no auxiliary variable; enough for neutral additives.
  Affine version ↓, ↑ only allows weakening.
  Enough for second order definition of additives.
- Duplication of tests: duplicated switches must stay *independent*.
   Fixed by means of *non uniform* modest switchings.
- Problem with  $\downarrow (A \otimes B) \multimap A$ : Fixed by weighted  $\Im$ , e.g.,  $\lambda [\![ q_A \Im_B(x), q_A(x) ]\!] + \lambda^{-1} [\![ q_B(x) ]\!]$ .
- *Desaxiomatisation* of arithmetic: third and fourth Peano axioms fixed. Recurrence: still a bit axiomatic, i.e., *ad hoc.*