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Context: cryptographic protocols

e Widely used: web (SSH, SSL, ...), pay-per-view, electronic purse,
mobile phone, ...

e Should ensure: confidentiality authenticity integrity anonymity,
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Context: cryptographic protocols

e Widely used: web (SSH, SSL, ...), pay-per-view, electronic purse,
mobile phone, ...

e Should ensure: confidentiality authenticity integrity anonymity,

e Presence of an attacker

— may read every message sent on the net,
— may Intercept and send new messages.
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Credit Card Payment Protocol

_*

e The waliter introduces the credit card.

e The waiter enters the amount . of the transaction on the terminal.
e The terminal authenticates the card.

e The customer enters his secret code.
If the amount m Is greater than 100 euros
(and in only 20% of the cases)

— The terminal asks the bank for the authentication of the card.
— The bank provides the authentication.
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More detalls

4 actors : the Bank, the Customer, the Card and Terminal.

Bank owns
e asigning key K ', secret,
e a verification key Kz, public,
e asecret symmetric key for each credit card K, secret.

Card owns
e Data : last name, first name, card’s number, expiration date,
e Signature’s Value V'S = {hash(Data)} -1,

e secret key K¢ p.
Terminal owns the verification key K 5 for bank’s signatures.
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Credit card payment Protocol (in short)

The terminal reads the card:
1. Ca — T :Data,{hash(Data)}
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Credit card payment Protocol (in short)

The terminal reads the card:
1. Ca — T :Data,{hash(Data)}
The terminal asks for the secret code:

2. T — (Cu: secret code?
3. Cu — Ca:1234
4. Ca — T :ok
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Credit card payment Protocol (in short)

The terminal reads the card:

1. Ca — T :Data,{hash(Data)}
The terminal asks for the secret code:

2. T — (Cu: secret code?
3. Cu — Ca:1234
4. Ca — T :ok

The terminal calls the bank:

5. T
6. B
7. T
8 Ca
9 T

10. B
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— B :auth?
— T : N,

—  Cla : N,

— T {Npfkes

— B:{Nb}KC’B
— T : ok
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Some flaws

The security was initially ensured by:
e the cards were very difficult to reproduce,
e the protocol and the keys were secret.

But
e cryptographic flaw: 320 bits keys can be broken (1988),

e logical flaw: no link between the secret code and the
authentication of the card,

e fake cards can be build.
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Some flaws

The security was initially ensured by:
e the cards were very difficult to reproduce,
e the protocol and the keys were secret.

But
e cryptographic flaw: 320 bits keys can be broken (1988),

e logical flaw: no link between the secret code and the
authentication of the card,

e fake cards can be build.

— “YesCard” build by Serge Humpich (1998).
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How does the “YesCard” work?

Logical flaw
Ca — T  :Data,{hash(Data)} -

T — C'a : secret code?
Cu — Ca :1234
Ca —T . ok

= W=
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How does the “YesCard” work?

Logical flaw
Ca — T  :Data,{hash(Data)} -

T — C'a : secret code?
Cu — Cd :2345
Ca — T . ok

= W=
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How does the “YesCard” work?

Logical flaw
l. Ca —T :Data,{hash(Data)}
2. T — C'a : secret code?
3. Cu —Cd :2345
4. Cd —T . ok

Remark: there iIs always somebody to debit.
— creation of a fake card (Serge Humpich).
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How does the “YesCard” work?

Logical flaw
l. Ca —T :Data,{hash(Data)}
2. T — C'a : secret code?
3. Cu —Cd :2345
4. Cd —T . ok

Remark: there iIs always somebody to debit.
— creation of a fake card (Serge Humpich).
1. Cd =T XXX, {hash(XXX)} -
T — Cu : secret code?
Cu — Cd :0000
Ca — T :o0k

= N
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Map

1. Formal approaches
2. Tools and case study

3. Link between formal approaches and cryptanalysis
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Formal approaches

e Messages are abstracted using terms.
These terms are build over a fixed signature.
E.g., ¥ ={< >, enc,dec,...}.
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Formal approaches

e Messages are abstracted using terms.
These terms are build over a fixed signature.

E.g., ¥ ={< >, enc,dec,...}.

e The attacker can do symbolic manipulations on terms.

Stenc(M,k) SFE! SP<M1,M2>Z._12
S+ M SkEM
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Formal approaches

e Messages are abstracted using terms.
These terms are build over a fixed signature.

E.g., ¥ ={< >, enc,dec,...}.

e The attacker can do symbolic manipulations on terms.

Stenc(M,k) SFE! SP<M1,M2>Z._12
S+ M SkEM

This approach allows to detect any logical attack that does not rely on
weaknesses of the encryption algorithm.
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Protocol description

Protocol:

T —Ca: N, Skax
Ca —T: {Nb}KCB Sk {x}KCB

Secrecy properties:
SEs?
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Decidability and complexity results

e In general, secrecy preservation is undecidable.

e For a bounded number of sessions, secrecy is co-NP-complete
[RusinowitchTuruani CSFWO01]
— constraint solving

e For an unbounded number of sessions

— for one-copy protocols, secrecy iIs DEXPTIME-complete
[CortierComon RTAO3] [SeildVerma LPARO4]
— tree automata, resolution theorem proving

— for message-length bounded protocols, secrecy Is
DEXPTIME-complete [Durgin et al FMSP99] [Chevalier et
al CSLO3]
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Adding algebraic operators

Some cryptographic primitives have algebraic properties.

e XOR r®(ydz) = (Dy) Dz
rdby = ydbro
rPdxr = 0
rd0 = «x
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Adding algebraic operators

Some cryptographic primitives have algebraic properties.

e XOR r®(ydz) = (Dy) Dz
rdby = ydbro
rPdxr = 0
rd0 = «x

e Modular exponentiation

exp(exp(g,2),y) = exp(g,z-y)
exp(g,x - y) exp(g,y - )
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Adding algebraic operators

Some cryptographic primitives have algebraic properties.

e XOR r®(ydz) = (Dy) Dz
rdby = ydbro
rPdxr = 0
rd0 = «x

e Modular exponentiation

exp(exp(g,2),y) = exp(g,z-y)
exp(g,x - y) exp(g,y - )

e Homomorphism h(z-y) = h(z)-h(y)
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Adding algebraic operators

Some cryptographic primitives have algebraic properties.

e XOR r®(ydz) = (Dy) Dz
roYy = yobx
rPdxr = 0
rd0 = «x

e Modular exponentiation

exp(exp(g,2),y) = exp(g,z-y)
exp(g,x-y) = exp(g,y-x)

e Homomorphism h(z-y) = h(z)-h(y)

— These properties are modeled using equational theories or by
extending the intruder power.
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Some results with algebraic operators

Deducibility
e homomorphism NP-complete, homomorphism + XOR or

Abelian groups EXPTIME [Lafourcade et al RTAO5]

e convergent subterm theories, extension to AC properties
[AbadiCortier Icalp04, CSFWO05]

Bounded number of sessions
e Commutativity co-NP-complete [Chevalier et al ARSPA04]

e EXxclusive Or co-NP-complete [Chevalier et al LICS03]
[ComonShmatikov LICS03]

e Abelian groups + modular exponentiation (Diffie-Hellman)
co-NP-complete [Chevalier et al FSTTCS03]

Unbounded number of sessions
e EXclusive Or decidable for one-copy protocols [ComonCortier

RTA03]
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Map

1. Formal approaches
2. Tools and case study

3. Link between formal approaches and cryptanalysis
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The European project Avispa

Automated Validation of Internet Security Protocols and Applications

In collaboration with:

e Artificial Intel

e Eidgenoessisc
Zurich, Swiss

Igence Laboratory, DIST, Univ. of Genova, Italy
ne Technische Hochschule Zuerich (ETHZ),

e Siemens Aktiengesellschaft, Munich, Germany
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The European project Avispa

Automated Validation of Internet Security Protocols and Applications

In collaboration with:
e Atrtificial Intelligence Laboratory, DIST, Univ. of Genova, Italy

e Eidgenoessische Technische Hochschule Zuerich (ETHZ),
Zurich, Swiss

e Siemens Aktiengesellschaft, Munich, Germany
Four verification tools are proposed:

e On-the-fly Model-Checker (OFMC)

e Constraint-Logic-based Attack Searcher (CL-AtSe)

e SAT-based Model-Checker (SATMC)

e Tree Automata based on Automatic Approximations for the
Analysis of Security Protocols (TA4SP)
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The Avispa Platform: www.avispa-project.org
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Results

e over 80 protocols analyzed (selected by Siemens and discussed
by the IETF) in few minutes or few seconds for most of them

e tools for both a bounded number of sessions (search for attacks)
and an unbounded number of sessions (security proof)

e first tool that allows algebraic properties (XOR)
e new attacks have been discovered
e publicly available: web interface, download, protocol library, ...

e already used by 45 sites including several companies (France
Telecom, Siemens, SAP,...)

Other case study: Validation of a contactless electronic purse of France
Telecom (RNTL project PROUVE)
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Map

1. Formal approaches
2. Tools and case study

3. Link between formal approaches and cryptanalysis:
A new branch of research in the Cassis team
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Formal and Cryptographic approaches

Formal approach

Cryptographic approach

Messages terms bitstrings
Encryption Idealized algorithm
. any polynomial
Adversary Idealized ya?go¥ithm
. by hand, tedious
Proof automatic Y

Link between the two approaches ?
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and error-prone
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Formal model: several abstractions

Messages are modeled by terms.
e {m},: message m encrypted by £
e (mq,mo): pair of my and m;
e ...

— no collisions:

vm, m/7 k, k' {m}k 7& {m,}k’v {{m}k}k ?’é m, <m7 m/> 7& {m}kv e
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Formal model: several abstractions

Messages are modeled by terms.
e {m},: message m encrypted by £
e (mq,mo): pair of my and m;
e ...

— no collisions:
vm, m/7 k, k' {m}k 7& {m,}k’v {{m}k}k 7& m, <m7 m/> 7& {m}kv e

Perfect encryption assumption:
Nothing can be learned from {m }, except if k£ is known.

— The Intruder can perform only specific actions like pairing and
encrypting messages or decrypting whenever he has the inverse key.
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Goal: soundness of the formal model

Composition of two approaches

|deal
protocol
I mplemented
protocol
signature encryption
algorithm algorithm
French/Japanese Symposium on Computer Security - Sept. 6th, 2005

Formal approach: verification
of idealized protocols

Cryptographers: verification
of the cryptographic primitives
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Three approaches

1. A computationally sound logic for proving security properties for
cryptographic protocols [Datta et al Icalp05]
This enables a symbolic analysis of the protocol that has a
computational interpretation
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Three approaches

1. A computationally sound logic for proving security properties for
cryptographic protocols [Datta et al Icalp05]
This enables a symbolic analysis of the protocol that has a
computational interpretation

2. Computational soundness of a Dolev-Yao like model
[CortierWarinschi ESOPO05]

Existing formal models with asymmetric encryption and

signatures are computationally sound, which allows the use of
existing automatic tools
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Three approaches

1. A computationally sound logic for proving security properties for
cryptographic protocols [Datta et al Icalp05]
This enables a symbolic analysis of the protocol that has a
computational interpretation

2. Computational soundness of a Dolev-Yao like model
[CortierWarinschi ESOPO05]
Existing formal models with asymmetric encryption and
signatures are computationally sound, which allows the use of
existing automatic tools

3. Computationally Sound Implementations of Equational Theories
against Passive Adversaries [BaudetCortierKremer Icalp05]
In particular, soundness of the Exclusive Or and soundness of
deterministic symmetric encryption.
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Three approaches

2. Computational soundness of a Dolev-Yao like model
[CortierWarinschi ESOPO05]
Existing formal models with asymmetric encryption and
signatures are computationally sound, which allows the use of
existing automatic tools
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Secrecy Properties

Formal models : property on traces

A data s Is secret if the adversary (which can only do
symbolic manipulations on terms) can not produce s.

Concrete model : indistinguishability

The adversary (any polynomial time algorithm) should not be able to
guess a bit of the secret.
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Hypotheses on the Implementation

e asymmetric encryption : IND-CCAZ2
— the adversary cannot distinguish between {ny}, and {n }
even If he has access to encryption and decryption oracles.
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Hypotheses on the Implementation

e asymmetric encryption : IND-CCAZ2
— the adversary cannot distinguish between {n}, and {n },
even If he has access to encryption and decryption oracles.

e signature : existentially unforgeable under chosen-message attack
I.e. one can not produce a valid pair (m, o)
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Hypotheses on the Implementation

e asymmetric encryption : IND-CCAZ2
— the adversary cannot distinguish between {n}, and {n },
even If he has access to encryption and decryption oracles.

e signature : existentially unforgeable under chosen-message attack
I.e. one can not produce a valid pair (m, o)

e parsing :
— each bit-string has a label which indicates his type (identity,
nonce, key, signature, ...)

— one can retrieve the (public) encryption key from an
encrypted message.

— one can retrieve the signed message from the signature
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Combination result

The perfect public key encryption corresponds to the IND-CCA2
security notion

Theorem : [Cortier-Warinschi Esop’05] (work initiated by
Micciancio-Warinschi TCC’04)

e for protocols with only public key encryption and signatures

e If a protocol is secure in the formal approach (proof given by a
tool for example),

e If the public key encryption algorithm is IND-CCAZ,
e If the signature is existentially unforgeable,
then the protocol is secure In the cryptographic approach.
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Some future directions

e Group protocols - open-ended data structures (transaction list,
message transducers, ...)

e Contract-signing protocol - complex properties such as fairness
and abuse-freeness (no party can prove to a third party that it has
the power to both enforce and cancel the contract)

e Link between the symbolic and computational models - further
work: refinement of the symbolic models, new security
properties, new cryptographic primitives, what are the limits?
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French collaborations on that subject

e LIENS, ENS Ulm

e LIF, Marsellle

e LSV, ENS de Cachan (RNTL project PROUVE)
e \erimag, Grenoble (RNTL project PROUVE)
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